Module 4: Crime Analysis
The purpose of this week's lab was to explore 3 selected hotspot mapping techniques for crime analysis for 2017 homicides in the Chicago area. The results of each technique were compared against 2018 homicide data to assess each technique's reliability for predicting crime. The first technique was Grid Overlay Hotspot Analysis. The goal was to determine the number of 2017 homicides in each grid cell and select the cells with the highest count. This was accomplished by first performing a spatial join between the 1/2 mile grid cells and the 2017 homicide data which added a field representing the number of homicides in each grid. I then used the Select by Attributes tool to select all counts greater than 0 and saved the selection as a separate feature class. I selected grids with the top 20% manually from the attribute table - the total number selected was calculated by dividing the total by 5 - and saved the selection as a separate feature class. To dissolve this feature class,...