Module 5: Unsupervised & Supervised Classification
In this week's lab, I classified satellite imagery using unsupervised and supervised classification methods in ERDAS Imagine. For the supervised classification, I created spectral signatures for 8 classes in Germantown, Maryland using the Region Growing Properties tool, Polygon tool, and the Signature Editor tool. After creating several Areas of Interests (AOIs) for each class, I examined the histograms and mean plots of all the signatures for spectral confusion. Based on the histograms and plots, I concluded that bands 4, 5, and 6 were the most separate and least confused of all the signatures. I used these bands for the supervised classification using Maximum Likelihood. I recoded the supervised image to merge the AOIs into 8 classes and calculated the area in acres for each of the classes. Below is the final result of supervised classification.
![]() |
Fig 1. Land use map from supervised classification of Germantown, Maryland. |
Comments
Post a Comment